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An expeditious synthesis of natural and unnatural
disubstituted maleic anhydrides
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Département de Chimie, LIMBP, IPEM, Université Paul Verlaine de Metz, 1, bd Arago, Metz Technopôle,

57078 Metz cedex 3, France

Received 29 June 2006; revised 14 August 2006; accepted 21 August 2006
Abstract—A facile entry to the synthesis of natural and unnatural substituted maleic anhydrides based on the Barton radical decar-
boxylation is described. The radicals, generated by the photolysis of N-hydroxy-2-thiopyridone esters derived from succinic and
alkyl acids reacted, respectively, with electron deficient olefin phenyl maleimide by a consecutive two-step radical addition, afforded
the corresponding disubstituted maleic anhydrides 1a–f.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1.
A number of natural products containing a substituted
maleic anhydride unit have been reported in the litera-
ture.1 They exhibit a range of biological activities,
including antibacterial activity,2 immunomodulating,3

and plant growth promoting.4 Among them the un-
named dialkylsubstituted maleic anhydrides 1a and 1b
were isolated from the soil, Pseudomonas cepacia A-
1419 by Soda and co-workers,5 while 1c was prepared
chemically by the dehydration of natural spiculisporic
acid.6 Anhydride 2 and cordyanhydride A 3 have
recently been isolated as bioactive fungal natural prod-
ucts7,8 (Fig. 1).

Two approaches for the synthesis of dialkylsubstituted
maleic anhydrides 1a–b based on ionic chemistry were
reported in the literature: copper mediated tandem
vicinal difunctionalization of dimethyl acetylenedicarb-
oxylate9 and chemoselective SN2/SN2 0 coupling of Grig-
nard reagents.10

We reported previously that the carbon–carbon bond
formation using free radical reactions might be the most
suitable way to synthesize branched-chain maleic anhy-
dride.11 In this respect the Barton decarboxylation reac-
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tion using thiohydroxamic esters as a source of carbon
radicals, seemed the method of choice.12 In this letter,
we report a further extension of this reaction towards
the total synthesis of anhydrides 1a–c and some ana-
logues using a double radical decarboxylation.

Our strategy for the synthesis of 1 is based on a two-step
radical addition to phenyl maleimide. In the first step,
the readily available succinic acid monomethyl ester 4
was converted into its thiohydroxamic ester 5, by the
DCC coupling method in the presence of 1-hydroxypyri-
dine-2(1H)-thione. Irradiation in situ with a tungsten
light (500 W) of 5, in the presence of phenyl maleimide
(5 equiv), gave the intermediate addition product 6 in
82% yield. The oxidation of 6 with m-CPBA, followed
by the elimination of the resulting sulfoxide produced
an unsaturated 7 in 90% yield. The syn elimination of
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Table 1.

Entry Acid % Product (yield)

1 8a 1a (42)
2 8b 1b (42)
3 8c 1c (43)
4 8d 1d (46)
5 8e 1e (48)
6 8f 1f (45)
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Scheme 1. Reagents and conditions: (i) DCC, CH2Cl2, rt, 2 h, then
phenyl maleimide (5 equiv) hm, 15 �C, 30 min (82%); (ii) m-CPBA,
CH2Cl2, 0 �C, 1 h; (iii) toluene, 110 �C, 1 h, (90% from 6).
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the 2-pyridylthio group of the intermediate 6 established
the trans stereochemical relationship of the 2-pyridyl-
thio group and the alkyl substituents, which is the result
of a trans addition of the radical to phenyl maleimide
(Scheme 1).13

Having compound 7 in hand, it was subjected as the ole-
fin trap to a second step radical reaction. Thus acid 8
was converted to its thiohydroxamic ester 9 as was de-
scribed for 5, and irradiation in situ with tungsten light
(500 W) in the presence of olefin 7 (5 equiv), produced
the intermediate addition product 10 as a mixture of iso-
mers,14 which was further treated with KOH in MeOH–
THF to furnish the desired dialkylsubstituted maleic
anhydride 115 as the sole isomer (Scheme 2). The natural
and unnatural anhydrides 1a–f were obtained in the
range of 42–48% yield over two steps from acids 8a–f.
Oleic acid 8f was successfully decarboxylated in the pres-
ence of olefin 7 without intramolecular addition to the
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Scheme 2. Reagents and conditions: (i) DCC, CH2Cl2, rt, 2 h, then
5 equiv of 7, hm, 15 �C, 30 min; (ii) KOH, THF–MeOH, reflux, 3 h.
double bond to give the disubstituted anhydride 1f.
The results are summarized in Table 1.

In summary, we have described an efficient and concise
synthesis of anhydride 1. The facile synthesis and excep-
tionally mild conditions of the reaction described herein
offer a rapid synthetic access to other analogues bearing
suitable functionalities on the alkyl side chain, and will
allow further biological evaluation.
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Spectral data of compounds 1a, 1b, and 1c are in
agreement with the reported literature.5,6

3-(4-Nonyl-2,5-dioxo-2,5-dihydrofuran-3-yl)propanoic acid
(1d). Oil; IR (neat) 2917, 2850, 1768, 1712, 1257,
910 cm�1; 1H NMR (CDCl3, 250 MHz), d 2.76 (s, 4H),
2.49 (t, J = 7 Hz, 2H), 1.58 (m, 2H), 1.28 (m, 12H), 0.88 (t,
J = 6.5 Hz, 3H); 13C NMR (CDCl3, 62.5 MHz), d 176.2,
165.4, 165.2, 146.1, 141.2, 31.6, 30.8, 29.5, 29.4, 29.2, 29.0,
27.7, 24.4, 22.4, 19.4, 13.9; Anal. Calcd for C16H24O5: C,
64.84, H, 8.16. Found: C, 64.65, H, 8.30.
3-(4-Undecyl-2,5-dioxo-2,5-dihydrofuran-3-yl)propanoic acid
(1e). Mp 54–55 �C; IR (KBr) 2917, 2850, 1768, 1712, 1257,
910 cm�1; 1H NMR (CDCl3, 250 MHz), d: 2.76 (s, 4H),
2.49 (t, J = 7 Hz, 2H), 1.58 (m, 2H), 1.28 (m, 16H), 0.88 (t,
J = 6.5 Hz, 3H); 13C NMR (CDCl3, 62.5 MHz), d 177.1,
165.6, 165.4, 146.3, 141.4, 31.9, 30.9, 29.6, 29.5, 29.4,
29.32, 29.28, 29.2, 27.9, 24.6, 22.7, 19.6, 14.1; HRMS m/z:
calcd for C18H29O5 [MH] 325.2015, found 325.2022.
(Z)-3-(4-(Heptadec-8-enyl)-2,5-dioxo-2,5-dihydrofuran-3-
yl)propanoic acid (1f). Oil; IR (neat) 2927, 2856, 1768,
1714, 1274, 912 cm�1; 1H NMR(CDCl3, 250 MHz), d:
5.35 (m, 2H), 2.77 (s, 4H), 2.50 (t, J = 7 Hz, 2H), 2.01 (m,
4H), 1.57 (m, 2H), 1.26 (m, 20H), 0.88 (t, J = 6.5 Hz, 3H);
13C NMR (CDCl3, 62.5 MHz), d: 176.4, 165.6, 165.4,
146.3, 141.4, 130.1, 129.6, 31.9, 30.9, 30.3, 29.8, 29.7, 29.6,
29.5, 29.3, 29.1, 29.0, 27.9, 27.2, 27.1, 24.6, 22.7, 19.6, 14.1;
HRMS m/z: calcd for C24H39O5 [MH] 407.2797, found
407.2851.
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